RapidGen

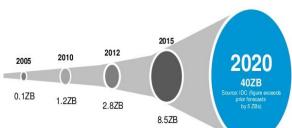
High Performance Decision Model Execution

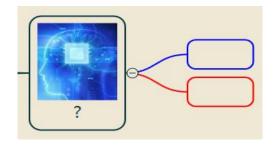
Compilation of DMN into Machine Code

Dr Jolyon Cox and Dr Jan Purchase - www.rapidgen.com - www.luxmagi.com

Overview

- Demand for High-Performance Decision Services
 - Can't be met exclusively with high-spec cloud servers
- We Address
 - What drives the need for high-efficiency decision-making?
 - Which techniques are used to achieve it?
 - What are DMN's barriers to efficiency?
 - How can we overcome them?
- We Demonstrate
 - Anatomy of an example high-performance decision model
 - Compilation and execution of this model
- We'll Take Questions at Any Time

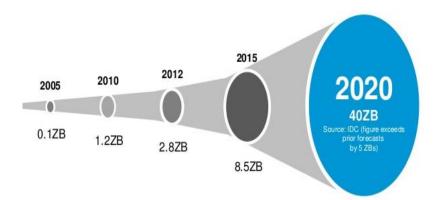




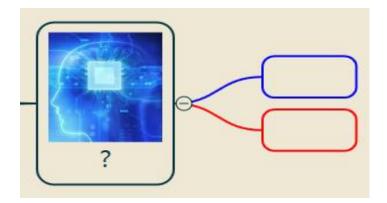
Need For Highly Efficient Decisions

Driven by

- Data Explosion: 'Fine-Grain Decisions'
 - More data sources, personalization
- Complexity of 'Enlightened decisions'
 - Analytic and AI fuelled decisions
- Modest hardware available to make 'edge decisions'
 - Bringing decisions to the data



Efficiency Needed to Handle Data Explosion


- Geometrically Increasing Data 'Fine-Grain' Decisions
 - Data source proliferation
 - Sensors everywhere IoT
 - Increased access to and application of unstructured data
 - Growing finer-grain applications for decision management
 - Compliance e.g., IFRS-17 contract-by contract processing
 - Personalization e.g., customer journey

Efficiency Needed for 'Enlightened' Decisions

- New Data Intensive Applications Driven by AI
 - Inference of customer identity
 - Deduction of customer need and intent
 - Detection of 'outlier' behaviour
 - Indicative of future actions, fraud, incipient failure
 - Sensor and input calibration using reinforcement learning
- Need to be 'Micro-Accountable'
 - ► For compliance e.g., GDPR
 - For human interoperability (XAI)

Move Towards Decentralized 'Edge' Decisions

- Increased Need to Make Decisions 'At the Edge'
 - Where data is first manifest and most voluminous
 - Instead of communicating huge volumes to the centre
 - Perform Some Tasks 'At the Edge'
 - Aggregate, apply analytics, spot local patterns, calibrate
 - Generate knowledge/inferences
 - React, make decisions subject to centralized confirmation
 - Protect centre from harm (e.g., DoS)
 - Without Real-time Involvement of the Core
- Using 1000s of Low-Spec I/O Devices

Move To Decentralized 'Edge' Decisions

Advantages

- 'Natural' parallelism, distribution of tasks
 - Data collection, cleaning and ethical filtering at source
 - Early aggregation to minimize transport bandwidth
 - Local sensor collaboration, peer-to-peer ensemble behaviours
- High redundancy
 - Supports fault detection, self healing networks no SPoF
 - Less reliance on internet connection
 - Support Byzantine security resilience to attack

Applications

- Remote/hostile environments: in-body, space, deep-sea
- High-volume/low-signal: surveillance, failure detection

RapidGen

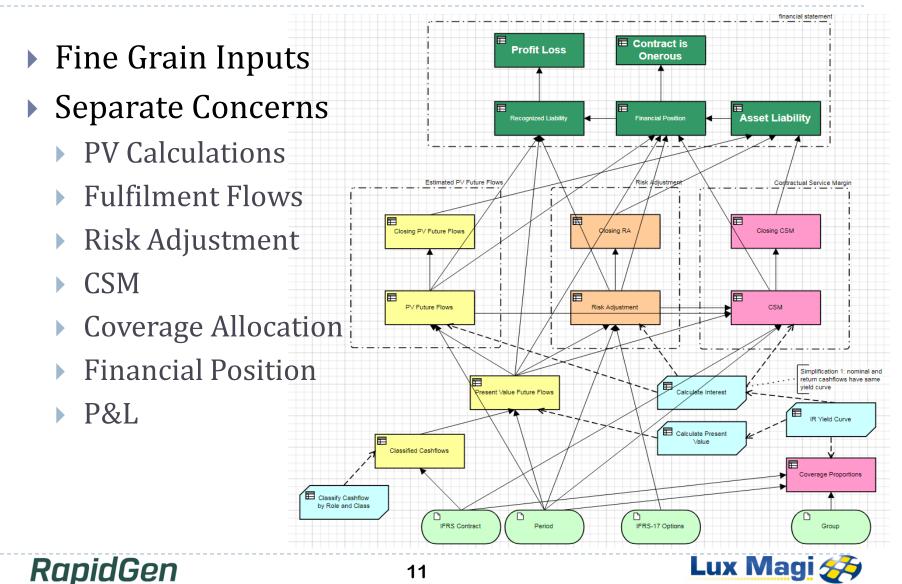
Lux Mag

Summing Up...

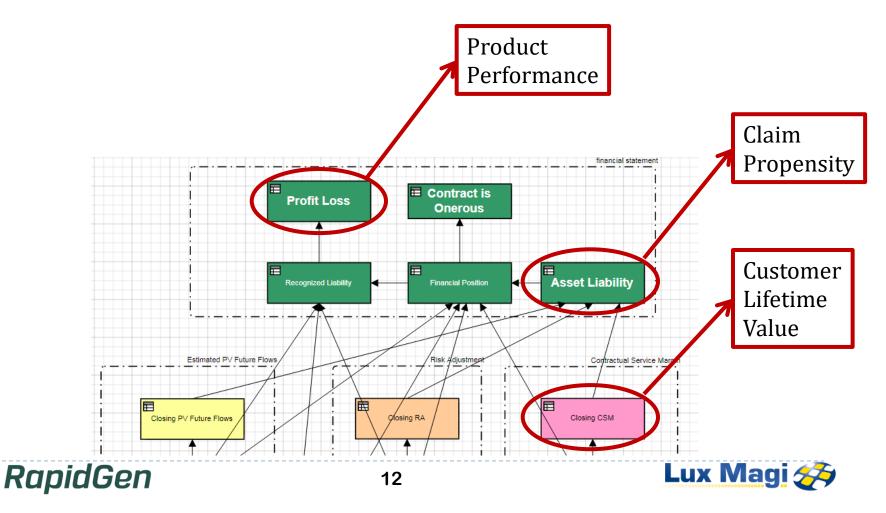
Fine-Grain, Enlightened and Edge Decisions

- Require more efficient decision services
- Sometimes restricted to modest hardware and connectivity
- An Example Fine-Grain Decision
 - Driven by financial compliance

Example High Performance Decision

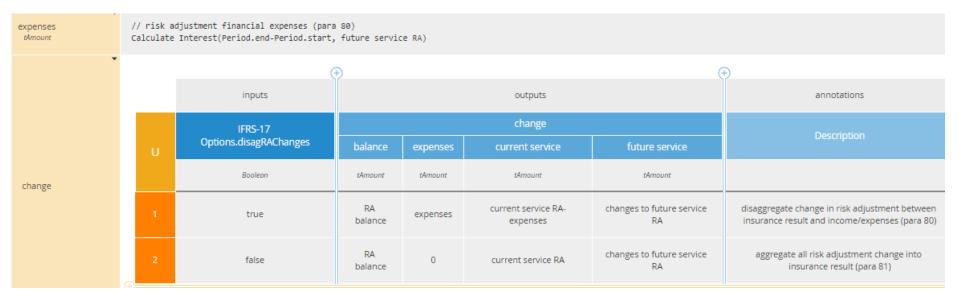

- International Financial Accounting Standard (IFRS) 17
 - Financial statement and disclosure of incremental profit
 - Determination of contractual service margins
 - Dynamic detection and handling of 'onerous' contracts
- Contract level decision, involving 100Ms contracts
- Ideal for High-Performance Decision Management
 - IFRS-17 has many options and variations
 - IFRS-17 will change regularly in the early days
 - IFRS-17 metrics can be used in many personalized decisions
 - Customer value, NBA, claim/fraud propensity, product design

Example High Performance Decision


Decision Model Statistics

- Modelled and tested using Trisotech DES
- 2 Main DRDs, 6 subviews
- > 37 decisions, 29 Knowledge Sources, 6 BKMs, 4 Input Data
- Covers about 25% of IFRS-17 including
 - Initial recognition, contract asset/liability [16(a), 32, 36, 38, 47]
 - Subsequent measurement, becoming profitable/onerous
 - Release of CSM in profitable and onerous contracts
 - Reconciliation of contract liability [44(be), B96-B97, 101]
 - Disclosure of profit and loss [48]
 - Insurance service result [84-85, 100, B123 or B124]

Lux Mag


Has Impact Outside Compliance

Focus on Traceability

RapidGen

For example: Risk Adjustment Disaggregation option

- Focus on Test Driven Approach
 - Model supports first 50 illustrative examples with tests
 - Used in production, in training, to assess options
 - Coupled with dashboard for profit projections

	Expected	Actual	
Profit Loss	insurance revenue 140.0	insurance revenue 140.00	
	insurance service expense -412.7214285714286	insurance service expense -412.7214285714285714285714285714285	
	insurance service result -272.7214285714286	insurance service result -272.7214285714285714285714285714285714286	
	investment income 0.0	investment income 0	
	insurance finance expense -26.85	insurance finance expense -26.85	
	finance result -26.85	finance result -26.85	
	PNL -299.57142857142856	PNL -299.5714285714285714285714285714285714286	

14

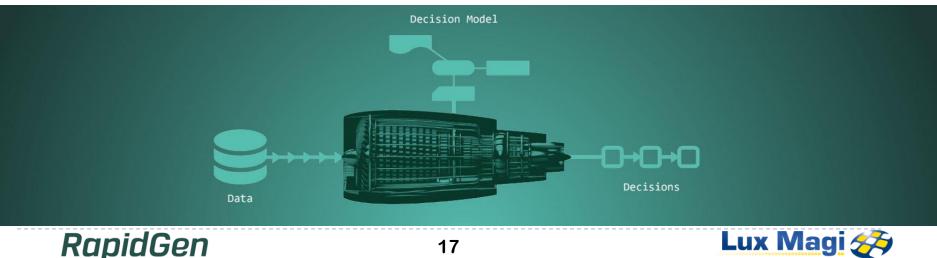
Outputs

RapidGen

Key Challenges in Efficient Execution of This Model

- How to create efficient services from DMN
- DMN's barriers to efficiency
- Our suggestions to overcome them
- Demonstration of Model Execution Performance

Lux Magi


Achieving High Efficiency – The RPL Language

- RPL a Simple, Low-level Language
- Compilation Directly into Machine Code
- Tiny Runtime Footprint (4Mb RTS Code)
- Logic Expressed Entirely as Decision Tables
- Multi-Ruling by Default
- Output Assignments Performed by Actions
- Built-In Iteration
- Easily Extended to Add New Features
- The RPL Compiler is Written in RPL

Lux Mag

Achieving High Efficiency – RPL Implementation

- Condition Tests Strictly Sequential
- **Rules Maintained as Bitmasks Selectively Cleared**
- Some Tests Need only Two Machine Instructions
- **Positive & Negative Condition Tests in Parallel**
- Tests in Dead Rules can be Optimised Away
- Inline Code Wherever Possible

A Simple DMN Decision Table

		inputs	(-	+) (- outputs	+) (+ annotations
	isAffordable	RiskCategory	Age	ApprovalStatus	Description
U	Boolean	Text "High", "Medium", "Low"	Number	Text "Approved", "Declined"	
1	true	"Medium", "Low"	>=18	"Approved"	
2			<18	"Declined"	
3		"High"	-	"Declined"	
4	false	-	-	"Declined"	

RapidGen

Lux Magi 🌮

The Same Decision Table Translated To RPL

```
*DETAB Approval Status
I Approval Status
                     Ι
  Approval Status$$
                     Ι
*
* Decision table Approval Status
                                    | Hit Policy: UNIQUE
*
Μ
  isAffordable
                              $TRUE
                                               Y Y Y N ELSE=SINGLE
                      =
                              "Medium","Low"
  RiskCategory
                                               YY----
                      =
                              "High"
                                               - - Y - -
  RiskCategory
                      =
                              18
                                               YN - - -
  Age
                      >=
Α
  $$UNIQUE FAIL
                                                . . . . X
                                               х....
  Approval Status
                              "Approved"
                      MV
                              "Declined"
  Approval Status
                                                . X X X .
                      MV
  $$RETURN
                             Approval Status
                                               хххх.
  $$FAIL
                                                . . . . X
```

Lux Magi

Converting DMN to RPL

- 2-Stage XSL Transform Using XSLT 3.0
- FEEL Expressions Parsed Into RPL Code (Writing parsers in XSLT is hard!)
- RPL Language Enhanced to Support
 - FEEL date and duration types
 - DMN hit policies
 - Decimal-128 numbers

Elegance Versus Efficiency

- Single Number Type: Decimal-128
- Dynamic Strings
- Immutable Lists
- Dynamic Interim Context and Return Types
- Arcane Hit Policies (P, O & Multiple Outputs)
- Tri-State Logic (NULLs)
- Complex Conditional Expressions
- Enumerations Expressed as Strings

Single Number Type: Decimal-128

- ▶ Universe contains about 10⁸⁶ particles
- World money supply is about 10¹⁴ US dollars

Disadvantages

- Very few hardware platforms implement decimal-128
- Emulation cost on Intel is a factor of about 100
- Integers much faster for age, count of orders etc.
- Hard to deduce when integers can be used instead
- Constraints? Modelling tool analysis?

RapidGen

Demonstration in RapidGen Genius

- Running on Mobile Core i7-4710HQ @ 2.5GHz
- No Network Connection
- Translate IFRS-17 DMN XML to RPL (Two Steps)
- Compile RPL Model Code with Test Program
- Run Test Program to Check Correct Outputs
- Run Many Silent Passes to Estimate Timing

Conclusions

- Efficiency is Still Vital
- DMN Poses Challenges to High Performance Execution
 - Solutions involve
 - Hardware aligned implementation (e.g., 'rule masks')
 - Performance best practices or tooling (e.g., explicit sub-typing)
 - Minimizing instruction count and re-evaluation
 - Using all available parallelism (e.g., condition tests)
 - Additions to standard
 - □ explicit integer type constraint
 - optional treatment of NULL

Follow Up

jolyon@rapidgen.co.uk, purchase@luxmagi.com

Any Questions?

RapidGen

